A Computation Offloading Scheme for UAV-Edge Cloud Computing Environments Considering Energy Consumption Fairness

نویسندگان

چکیده

A heterogeneous computing environment has been widely used with UAVs, edge servers, and cloud servers operating in tandem. Various applications can be allocated linked to the nodes that constitute this environment. Efficiently offloading allocating computational tasks is essential, especially these environments differentials processing power, network bandwidth, latency. In particular, such as drones, operate using minimal battery power. Therefore, energy consumption must considered when tasks. This study proposed an fairness-aware scheme based on a genetic algorithm (GA). The method minimized differences by evenly among drones. Based performance evaluations, our improved efficiency of fairness, compared previous approaches, Liu et al.’s scheme. We showed fairness was up 120%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory Optimization

This paper studies a new mobile edge computing (MEC) setup where an unmanned aerial vehicle (UAV) is served by cellular ground base stations (GBSs) for computation offloading. The UAV flies between a give pair of initial and final locations, during which it needs to accomplish certain computation tasks by offloading them to some selected GBSs along its trajectory for parallel execution. Under t...

متن کامل

UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design

With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...

متن کامل

Energy and Performance Efficient Computation Offloading for Deep Neural Networks in a Mobile Cloud Computing Environment

In today’s computing technology scene, mobile devices are considered to be computationally weak, while large cloud servers are capable of handling expensive workloads, therefore, intensive computing tasks are typically offloaded to the cloud. Recent advances in learning techniques have enabled Deep Neural Networks (DNNs) to be deployed in a wide range of applications. Commercial speech based in...

متن کامل

A Review on Energy Efficient Computation Offloading Frameworks for Mobile Cloud Computing

Mobile Cloud Computing is an evolving technology that integrates the concept of cloud computing into the mobile environment. Smartphones are boon in the world of technology but they have certain limitations (e.g. battery life, network bandwidth, storage, energy) when running complex applications which require large computations. Using Cloud Computing in mobile phones, these limitations can be a...

متن کامل

Framework for Computation Offloading in Mobile Cloud Computing

— The inherently limited processing power and battery lifetime of mobile phones hinder the possible execution of computationally intensive applications like content-based video analysis or 3D modeling. Offloading of computationally intensive application parts from the mobile platform into a remote cloud infrastructure or nearby idle computers addresses this problem. This paper presents our Mobi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Drones

سال: 2023

ISSN: ['2504-446X']

DOI: https://doi.org/10.3390/drones7020139